Motivation

Fast convolution --- compute convolution using FFT

Outline

-Fast convolution of short sequences;
-Fast convolution of long sequences.

Convolution of short sequences

- Let $x(n)$ be length $L,(n=0,1, \ldots L-1)$;
- $h(n)$ be length $M,(n=0,1, \ldots, M-1)$;
- $y(n)$ should have $L+M-1$ samples, given by:

$$
\begin{array}{r}
y(n)=x(n) * h(n)=\sum_{m=0}^{N-1} h(m) x(n-m) \\
\text { Where } n=0,1, \ldots, N(N=L+M-1)
\end{array}
$$

This equation is referred to as linear convolution

Convolution of short sequences

- Total computations (Assume $M<L$)
- $n=0$, 1 multiplication
- $n=1$, 2 multiplications and 1 addition;
- $n=2$, 3 multiplications and 2 additions;
- if $M-1<=n<=L-1, M$ multiplications, \ldots
- $n=L+M-2,1$ multiplication and no addition
- Hence, ML multiplications for convolving $x(n)$ and $H(n)$

Convolution of short sequences

- Let us see if DFT can be used for computing the convolution.
- As the length of $x(n), h(n)$ and $y(n)$ are L, M and $(L+M-1)$ respectively, we consider N point DFTs of them, where $N>L+M-1$:

$$
\begin{aligned}
& X(k)=\sum_{n=0}^{L-1} x(n) W_{N}^{n k}, \quad H(k)=\sum_{n=0}^{M-1} h(n) W_{N}^{n k} \\
& Y(k)=\sum_{n=0}^{L+M-1} y(n) W_{N}^{n k}
\end{aligned}
$$

Convolution of short sequences

$$
\begin{aligned}
& X(k) H(k)=\sum_{n=0}^{L-1} x(n) W_{N}^{n k} \sum_{m=0}^{M-1} h(m) W_{N}^{m k} \\
& =\sum_{n=0}^{L-1} \sum_{m=0}^{M-1} x(n) h(m) W_{N}^{(n+m) k} \leftarrow \text { let } \quad n+m=l \\
& =\sum_{l=0}^{L+M-1} \sum_{m=0}^{M-1} x(l-m) h(m) W_{N}^{l k} \\
& =\sum_{l=0}^{L+M-1} y(l) W_{N}^{l k}=Y(k)
\end{aligned} y(\eta)
$$

Convolution of short sequences

Hence convolution can be computed via
DFT's:

- Step 1.

Compute N-point DFT of $x(n)$ and $h(n)$, where N $>L+M-1$

- Step 2.

Compute $Y(k)=X(k) H(k)$

- Step 3.

Compute N-point IDFT of $Y(k)$ to get $y(n)$

Convolution of short sequences: Is it more efficient to use DFTs?

- Multiplications: (1/2)NlogN for each FFT and IFFT. Hence (3/2) NlogN +N complex multiplications are required; where $\mathrm{N}>=\mathrm{L}+\mathrm{M}-1$
- The direct convolution involves ML real multiplications;
- Which one is more efficient? FFT is more efficient when L and M are large.
- For example: when L=M

Circular convolution

- Note that N must be bigger than $\mathrm{L}+\mathrm{M}-1$. Otherwise the result will not be correct. Why?
-Naturally multiplication in frequency domain is equivalent to circular convolution.
- If $\mathrm{N}<\mathrm{L}+\mathrm{M}-1$, the circular convolution will involves overlaps.

Circular convolution

- Circular convolution of $x(n)$ and $h(n)$ is defined as the convolution of $h(n)$ with a periodic signal $x_{p}(n)$:

$$
y_{p}(n)=x_{p}(n) * h(n)
$$

where

$$
x_{p}(n)=x(n \bmod N), \quad-\infty<n<\infty
$$

Circular Convolution

$x(n)$ length N

$h(n)$ length M \square

Circular Convolution

$x(n)$ length N

$h(n)$ length M

Circular Convolution

$x(n)$ length N

Circular Convolution

$x(n)$ length N

	*			
0	0	0	0	0
hp(-n)				

Circular Convolution

Circular Convolution

Circular Convolution

Examples

- Let $\{x(n)\}=\{1,2,3\}$ and $\{h(n)\}=\{1,1,1\}$, then the result should be $\{y(n)\}=\{1,3,6,5,3\}$
- With $\mathrm{L}=\mathrm{M}=3$, we should choose $\mathrm{N}=5$
- however if we take $\mathrm{N}=4$, the extended signals are
- $\{x(n)\}=\{1,2,3,0\}$ and $\{h(n)\}=\{1,1,1,0\}$
- The DFT yields
- $X(k)=\{6,-2-2 j, 2,-2+2 j\}$
- $H(k)=\{3,-j, 1, j\}$
- $Y(k)=\{18,-2+2 j, 2,-2-2 j\}$
- Hence $y(n)=\{4,3,6,5\}$

Examples

$$
x_{p}(n)=\{\ldots . .3,01,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0,1,2,3,0 \ldots .\}
$$

$x_{p}(-n)=\{\ldots .3,2,1,0,3,2,1,0,3,2,1,0,3,2,1,0,3,2,1,0, \ldots$. $\{\mathrm{h}(\mathrm{n})\}=\{1,1,1\}$,
$y(n)=4,3,6,5$

Examples

If $x(n)=\{1,2,3,0,0\} \rightarrow 5$ point DFT
$h(n)=\{1,1,1,0,0\} \rightarrow 5$ point DFT
we can get $y(n)=\{1,3,6,5,3\}$

$$
\begin{gathered}
\{1,2,3,0,0,1,2,3,0,0,1,2,3,0,0,1,2,3,0,0,1,2,3,0,0\} \\
\{1,1,1\} \\
x_{p}(n)=\{\ldots \ldots, 2,3,0,0,1,2,3,0,0,1,2,3,0,0,1,2,3,0,0,1,2,3,0 \ldots\} \\
---> \\
x_{p}(-n)=\{\ldots .0,0,3,2,1,0,0,3,2,1,0,0,3,2,1,0,0,3,2,1,0,0, \ldots\} \\
\quad\{h(n)\}=\{1,1,1\}, \\
y(n)=1,3,6,5,3
\end{gathered}
$$

Convolution of long sequences

$x(n)$

$h(n)$

Convolution of long sequences

$x(n)$
$h(n)$

Convolution of long sequences

$x(n)$

Convolution of long sequences

$x(n)$

Convolution of long sequences

$x(n)$

Convolution of long sequences

$x(n)$

Convolution of long sequences

$x(n)$

Convolution of long sequences

$x(n)$

Convolution of long sequences

$x(n)$

Convolution of long sequences

$x(n)$
$h(n) \square$

Convolution of long sequences

$x(n)$

Convolution of long sequences

$x(n)$

Convolution of long sequences

$x(n)$

Convolution of long sequences

$x(n)$
$h(n)$

Convolution of long sequences

$x(n)$
$h(n)$

Convolution of Long Sequences --Block Based approach

- $\mathrm{x}(\mathrm{n})$ are divided into blocks;
- convolutions are performed for each block and $h(n)$--- short time convolution;
- construct the output by combining the results of block convolution;
- Issues : how to construct the blocks? How to construct the output?
- Two approaches: overlap-save and overlap-add

Convolution of long sequences

$$
h(n)
$$

Overlap-save approach

Overlap-save approach

Block length=N

$Y(k)$

The first ($\mathrm{M}-1$) samples will not be correct; only the ($\mathrm{N}-\mathrm{M}+1$) samples are correct;

Overlap-save approach

The first $\mathrm{M}-1$ samples will not be correct; only the $\mathrm{N}-\mathrm{M}+1$ samples are correct;

Overlap-save approach

Some data will get lost if there is no overlap between the blocks

Some data will get lost if there is no overlap between the blocks

Overlap-save approach

Overlap-save approach

- The above process is called overlap-save methods:
- Take N signal samples as a block;
- do N-point DFT of the block, and N-point DFT of $h(n)(N>M$ the length of $h(n))$;
- Multiple $\mathrm{X}_{\mathrm{b}}(\mathrm{k})$ and $\mathrm{H}(\mathrm{k})$;
- Do the IDFT of $Y(k)$
- Discard the first (M-1) samples of $y(n)$;

Overlap-save approach

- Get the next block by getting $N-M+1$ new samples, and discard (N-M+1) oldest samples
- Repeat the above convolution process.

Overlap-save approach--- an example

- Convolve a 50-pint sequence $h(n)$ with a long sequence $x(n)$:
- 1. Let $\mathrm{N}=64$;
- 2. taking 64 samples from $x(n)$, perform circular convolution using 64-point FFT. Discard the first 49 samples and keep the last $64-50+1=15$ samples;
- Move the block by getting 15 samples from $x(\mathrm{n})$, repeat step 2 and keep the next 15 samples of the result....
- Combine all the 15 samples together to get the convolution results

Convolution of Long Sequences ---Overlap-Add Method

- Here we try to use linear convolution instead of circular convolution:
- Take a block xb(n) of length L;
- $H(n)$ is of length M;
- Take the N-point DFT of them, where $N=L+M-1$
- Calculate $Y(k)=X(k) H(k), k=0,1, \ldots, N-1$
- Calculate IDFT of $\mathrm{Y}(\mathrm{k})$ yield $\mathrm{y}(\mathrm{n}), \mathrm{n}=0,1, \ldots, \mathrm{~N}-1$

Convolution of long sequences

$$
h(n)
$$

Convolution of long sequences

The first M and the last M samples will not be correct; only the N-M samples are correct;

Convolution of long sequences

The first $\mathrm{M}-1$ and the last $\mathrm{M}-1$ samples will not be correct; only the N-M samples are correct;

Convolution of long sequences

The first $\mathrm{M}-1$ and the last $\mathrm{M}-1$ samples will not be correct; only the $\mathrm{N}-\mathrm{M}+1$ samples are correct;

Convolution of long sequences

Convolution of long sequences

Convolution of long sequences

Convolution of Long Sequences ---Overlap-Add Method

- Construct the mth block $\mathrm{xb}(\mathrm{n})$ as: $\{x(m L), x(m L+1), \ldots x(m L+L-1), 0, \ldots, 0\} \rightarrow$ Length N
- Take the N-point DFTs of $\mathrm{xb}(\mathrm{n})$ and $\mathrm{h}(\mathrm{n})$;
- Multiplication $\mathrm{Y}_{\mathrm{m}}(\mathrm{k})=\mathrm{X}_{\mathrm{b}}(\mathrm{k}) \mathrm{H}(\mathrm{k})$
- IDFT: $y(n)=I D F T(Y(k))$
- Repeat the operation for next block $\{x((m+1) L), x((m+1) L+1), \ldots x((m+1) L+L-1), 0, \ldots, 0\}$

Convolution of Long Sequences ---Overlap-Add Method

- The last ($M-1$) points for the first $y(n)$ are overlapped and added to the first ($\mathrm{M}-1$) points of the second $y(n)$;
- The last ($M-1$) points for the second $y(n)$ are overlapped and added to the first ($\mathrm{M}-1$) points of the third $\mathrm{y}(\mathrm{n})$;
- The above process will result in the convolution of $h(n)$ and $x(n)$

Summary

- Fast convolution of short sequences
- Linear convolution
- Circular convolution
-When they can be equal?
- Fast convolution of short sequences
- Overlap-saving (block overlapping, discard some results)
- Overlap-adding(block separate, overlap and add some results)

